Mimmal Model Program
Learning Seminar.

Week 4 :
Base point free Theorem.
The Cone Theorem.

Week 4:
bot Theorem.
The cone Theorem.
\qquad

The Cone Theorems:

old notation (X, Δ)	kIt
(X, Δ)	kIt
with $\Delta \geq 0$	

(X, \Delta) \\
sub-klt \\
(X, \Delta) \\
kIt.\end{array}\right.\)

Remark: As of 2021, this still confuses people.
Theorem (Non vanish): X proper. (X, Δ) sob-klt
D net Cartier Cartier. Assume a $D-\left(K_{x}+\Delta\right)$ is big and nef for some $a \geq 0$. Then for $m>20$

$$
H^{0}(X, m D-\lfloor\Delta\rfloor) \neq 0 .
$$

$$
\lfloor\Delta\rfloor=0
$$

Theorem $(b p f)$: X proper, (X, Δ) kill
D net Caber fivnor. Assume a $D-\left(k_{x}+\Delta\right)$ is
big and net for some $a \geq 0$. Then for mao

$$
|m D| \text { is lop }
$$

Theorem (Rationality): X proper, (X, Δ) kill $K x+\Delta$ not net, $a(K x+\Delta)$ Cartier. H net and big C_{2} bour

Define $r:=r(H)=\max \{t \in \mathbb{R} \mid H+t(k x+\Delta)$ is nett.
Then r is rational and its denom is controlled by a $a\left(d_{m}(x+1)\right.$.
Theorem (Cone Theorem): (X, Δ) projective kit pair-
$\left((1)\right.$ There are count ably many $c_{i} \subseteq x$ s.l. $\left.0<-\left(k_{x}+\Delta\right) \cdot c_{1} \leqslant\right) 2 \delta_{m} x \otimes$

$$
\overline{N E}(x)=\overline{N E}_{(K x+\Delta) \geqslant 0}+\sum_{1,} R_{20}\left[c_{i}\right]
$$

(a) For any $\varepsilon>0$ and H ample.

$$
\overline{N E}(x)=\overline{N E}_{(k x+\Delta+\varepsilon H)>a}+\sum_{j_{\text {inkle }}} i \mathbb{R}_{20}\left[c_{i}\right]
$$

(3) $F \subseteq \overline{N E}(X)$ extrema, $(\mid 6 x+\Delta)-$ neg

Then there exists a contraction morphirm contr: $X \rightarrow Z$ $C \subseteq X$ mapped bo 2 point $\Leftrightarrow[c] \in F$.
(4) Cont $F_{F}: X \longrightarrow Z$, as in (3), \mathcal{L} a line bundle on x s.l. $\mathscr{L} \cdot F=0$. Then there exits \mathscr{L}_{z} on Z sit

$$
\mathscr{L} \simeq \operatorname{cont}_{F}^{*} \mathscr{L}_{z} .
$$

The Cone Theorems,
Riemann-Roch Theorem.

$$
\begin{aligned}
& \text { Non- vanishing } \\
& \sqrt{\|} \longleftarrow \text { use Kodaira vanish bo lift recons }
\end{aligned}
$$

Base-point free Theorem
$\| \longleftarrow$ study linear systems of the form
Rationality Theorems $|p H+q| x x \mid$ for different (pig)
$\|\|$ formal argument
Cone Theorem of convex geom
$R_{m x}$: The whole firwossion is with (x, Δ) kilt.
But the above theorems hold when (X, Δ) k op replacing net \& big \Rightarrow ample

Proof of bot Theorem:
By non-vamshay $H^{\circ}(X, m D) \neq 0$ for $m \geqslant 2$. $B(s)$ the bare lows of $\mid s D 1$.
It suffices to prove that for $B_{s}=B(m) \neq \varnothing$.
$f: Y \longrightarrow X \log$ resolution $\quad K_{Y}=f^{*}\left(K_{x}+\Delta\right)+\sum i, g F_{J}$

$$
f^{*}(\underbrace{\left(a D-\left(K_{x}+\Delta\right)\right.}_{\text {big \& Def }})-\underbrace{\sum_{1} p_{j} F_{j}}_{\text {ample over } X \text {. }} \underbrace{\frac{\left.a_{j}\right\rangle-1}{2}}_{0<p_{j}<t}
$$

$$
f^{*} \operatorname{lm} D\left|=|\mu|+\sum r_{j} F_{j}\right. \text { fixed part }
$$

$B_{s}=U\left\{f\left(F_{j}\right) \mid r_{j} 20\right\}$. Note that

$$
f^{-1} B_{s}|m D|=B_{s}\left|m f^{*} D\right|
$$

There exists F_{j} with $r_{j}>0$ so that for all b>20. F_{j} is not contained in $B_{s} \mid b f * D l$
$b>0$ integer, $c>0$ rational $b>c m+a$, we define

$$
\begin{aligned}
& N(b, c)=b f^{*} D-K_{\tau}+\sum_{i j}^{i}\left(-c r_{j}+a_{j}-p_{j}\right) F_{j} \\
& \begin{array}{cc}
=(b-c m-a) f^{*}(D) & (\text { ref }) \\
& + \\
c\left(m f^{*} D\right. & -\sum_{i}\left(r_{j} F_{j}\right) \quad(b p f)
\end{array} \\
& \text { t } \\
& f^{*}\left(a D-\left(K_{x}+\Delta\right)\right)-\sum_{i}^{1} p_{j} F_{j} \quad \text { (ample) } \\
& K_{y}+A+\text { eff. }
\end{aligned}
$$

By Kodara $H^{\prime}\left(Y,[N(b, c)]+K_{Y}\right)=0$, and

$$
\lceil N(b, c)\rceil=b_{f^{*}} D+\sum_{i}\left[-c r_{j}+a_{j}-p_{j}\right\rceil F_{j}-k_{4}
$$

increase C from O to co and wiggle the p_{j} to achieve

$$
\begin{aligned}
& \left.\sum_{i} \Gamma-c r_{j}+a_{j}-p_{j}\right\rceil F_{j} \\
& \text { II } \\
& \underset{\substack{v_{r} \\
v_{0}}}{\lceil A\rceil} F_{F_{j}} \longrightarrow \text { prime } \\
& K_{Y}+\lceil N(b, c)\rceil=b+\times D+\lceil A\rceil-F \longrightarrow \text { prime } \\
& \text { \} } \\
{0 \rightarrow O_{r}\left(b f^{x} D+\Gamma A T-F\right) \xrightarrow{x F}} \\
{O_{r}\left(6 t^{*} D+\text { TAI }\right) \longrightarrow} \\
{Q_{F}\left(b f^{*} D+F A T\right) \longrightarrow 0} \\
{H^{0}\left(Y, b f^{*} D+T A T\right) \longrightarrow H^{\circ}\left(F,\left.\left(b f^{*} D+T A T\right)\right|_{F}\right)}
\end{aligned}
$$

is surjective for $b \geqslant c m+a$
TAT is f-exceptional.

$$
\left.N(b, c)\right|_{F}=\left.\left(b f^{*} D+A-F-K_{r}\right)\right|_{F}=\left.\left(b f^{*} D+A\right)\right|_{F}-k_{F}
$$

$$
H^{\circ}\left(Y, b^{*} D+\Gamma A T\right) \longrightarrow H^{\circ}\left(F,\left(b f^{*} D+\left.\lceil A T)\right|_{F}\right)\right.
$$

H
0
by Non-vanishing
has a section not vanishing on F.
Since $\Gamma_{v_{0}}$ is f-exceptio nl, we have

$$
\begin{aligned}
H^{0}\left(Y, b f^{*} D+\Gamma A T\right) & \subseteq H^{0}(Y, b f+D)=H^{\circ}(X, b D) . \\
& \supseteq
\end{aligned}
$$

Negativity Lemma: $\quad h: Z \rightarrow Y$ Giratiomal proper between normal, $-B h$-ned.

$$
\begin{aligned}
& \text { (1) } B \geq 0 \Longleftrightarrow h * B \geq 0 \\
& \text { (2) } h^{-1}(y) \subseteq \operatorname{supp} B \text { or } h^{-1}(y) \cap \operatorname{supp} B=\varnothing \quad \text { over the ie } \\
& \underline{\square} \\
& 0 \leq E \sim b f^{*} D+T A T \\
& E-\Gamma A\rceil \geq 0 \\
& f_{*}(E-T A T)=f_{* E} \geq 0
\end{aligned}
$$

Now, we have a section E of bf *D which push-forwards to a section $f * E$ of $D D$. We want to argue that the section E is disjoint from F, so $f_{*} E$ is disjoint from W. This will imply $B_{s}(b D) \subsetneq B_{s}(m D)$ contradrety the stabilization of B :

$$
\begin{aligned}
& 0 \leq E \sim b f^{*} D . \\
& \operatorname{c2n} E \text { inf } F t_{r 2 n s} \text { ? }
\end{aligned}
$$

Assume C maps to a point in W.
C is general enough on some fiber of f over W.

$$
C \cdot E>0, \quad C \cdot b f^{*} D=0 \quad \Rightarrow \Leftarrow
$$

We fond a section E of $b f * D$ dis from F $\Longrightarrow f_{*} E$ is a section of $b D$ dis from W.

Theorem: Let (X, Δ) be proper $k l f$ purr.
$k x+\Delta$ big k nee. Then $\bigoplus_{m \geq 0}^{\infty} H^{0}\left(\theta_{x}(m k x+\operatorname{lm} \Delta J)\right)$
is finitely generated over \mathbb{C}.
BCHMO6: The finite gen of $R\left(K_{x}+\Delta\right)$
Conjecture (Abundance): (X, Δ) proj $k l t$, if $k x+\Delta$ is nee, then $k x+\Delta$ is semizmple.

Conjecture (Effectivity): (x, Δ) prog kills if $k x+\Delta$ preff, then $k x+\Delta$ is eff.

$$
k x+\Delta \sim_{\mathbb{Q}} E \geq 0
$$

The cone theorem,
Theorem: $N_{\not 2} \subseteq N_{Q} \subseteq N_{\mathbb{R}}$. $\overline{N E} \subseteq N_{R}$ closed strictly convex cone. $K \in N_{Q}^{*}$ so that $(K . C)<0$ for some $C \in \overline{N E}$.
Assume there exits $\alpha(K) \in \mathbb{Z}_{120}$ such that for $2 l l$ $H \in N_{i a}^{*}$ with H_{20} on $\sqrt{N E}-\{0\}$.

$$
r=\max \{f \in \mathbb{R} \mid H+t k \geq 0 \text { on } \overline{N E}\} .
$$

rational of the form $u / \alpha(K)$. Then.

$$
\overline{N E}=\overline{N E}_{k \geq 0}+\sum_{\text {coomblic. }}^{1} \mathbb{R}_{20}\left[\xi_{i}\right]
$$

$\xi_{i} \in N_{z_{i}}$ with $(\xi ; i k)<0$ and $\mathbb{R}_{20}\left[\xi_{i}\right]$ do not accumulate in $K x<0$.

Proof: Fix H an ample Cartier divisor.
L nef $, F_{L}=L^{\perp} \cap N E, \quad n \in \mathbb{Z}_{120}$. §

$$
r_{L}(n, H)=\max \left\{t \in \mathbb{R} \left\lvert\, n L+H+\frac{t}{\alpha(k)} K\right. \text { is ne f }\right\} \text {. }
$$

$r_{L}(h, H)$ is in $\mathbb{Z}_{1}>0$. $\quad r_{L}(m, H)$ non-dee wort n
Indeed, If $n^{\prime}>n$, then

$$
n^{\prime} L+H+\frac{r_{L}\left(n_{1} H\right)}{\alpha(K)} K=\underbrace{\underbrace{\left(n^{\prime}-n\right)}_{n \in f} L}_{n \in f}+\underbrace{n L+H+\underbrace{r_{2}(k)}_{\alpha\left(n_{1} H\right)}}_{\text {net }} K
$$

Hence, we conclude that $r_{L}\left(n^{\prime}, H\right) \geqslant r_{L}(n, H)$.
On the other hand, we will see it is bounded above

Indeed, for any $\xi \in F_{L} \backslash \overline{N E}_{k 20}$, we have

$$
\begin{aligned}
& H \cdot \xi+\frac{r_{L}(m, H)}{\alpha(k)} \cdot K \cdot \xi \geq 0 \\
& r_{L}(n, H) \leq \alpha(K) \cdot \frac{H \cdot \xi}{-k-\xi} .
\end{aligned}
$$

So $r_{L}(M, H)$ is bounded above, is integral and non-dec. This sequence stabilize for n large enough to $r_{L}(H)$

We define the divisor:

$$
D(n L, H):=n \alpha(K) L+\alpha(K) H+r_{L}(H) K
$$

We claim that:

$$
\begin{aligned}
& F_{D(n L H)} \subseteq \overline{N E}_{K<0} \cup\{0\} . \\
& \text { orthogoml to } D(n L, H) \text {. }
\end{aligned}
$$

If $\xi \cdot D(n L, H)=0$, then $(n \alpha(K) L+\alpha(k) H)-\xi 20$ so $g \cdot k<0$, proving this dim.

We claim that for n large enough, we have.
(*) $F_{D(n L, H)} \subseteq F_{L}$.
Let $\xi \in F_{D(n L H)}$ with $\xi \notin F L$. Then, we have that

$$
\xi \cdot L \geq 0 \text { and } \xi \cdot\left(n \alpha(K) L+\alpha(K) H+r_{L}(H) K\right)=0
$$

For $n^{\prime} \gg n$, we have (this value will depend on $\alpha(k), H, r_{2}(H) \& k$).

$$
\xi \cdot\left(n^{\prime} \alpha(k) L+\alpha(k) H+r_{L}(H) K\right)>0 .
$$

Hence $\xi \notin F_{D\left(n^{\prime} L, H\right)}$
Since L is net, we have $F_{D\left(n^{\prime} L, H\right)}^{\subset} F_{D(n L, H)}$.
If $F_{D(n i L, H)} \subseteq F_{L}$, then we stop.
If not, we can iterate the above process bo cut down $\operatorname{dim} F_{D\left(n^{\prime} L, H\right) \text { agar. }}$
This proves that (*) eventually holds.

Hence, we have that:
$0 \neq F_{D(n L, H)} \subseteq F_{L}$ holds op to replying n with a large multiple
Claim: for some $H, \operatorname{dim} F_{D(L L, H)}<\operatorname{dim} F_{L}$.
H_{i} bess F_{L}^{*}, the linear fonctures
$\left.\left(n L+H_{i}+\frac{r_{L}\left(H_{i}\right)}{\alpha(K)} K\right)\right|_{F_{L}} \quad$ they cant
be all zero, so $\quad \operatorname{dim}_{D(n L, H i)}<\operatorname{dim} F_{L}$ for nome: :
$F_{L^{\prime}} \subseteq F_{L} \quad F_{L^{\prime}}$ is one dim

$$
\overline{N E} \quad \& \quad \overline{N E}_{k_{20}}+\sum_{d m i m i l}^{1} F_{L}
$$

have the closure (verbation from classic cone Thun).

Step 4: In this step, we prove that the F_{L} do not accumulate in $K<0$.

Step 5: In this step, we prove that for $\varepsilon \geq 0$, we have the equality:

$$
\overline{N E}=\overline{N E}_{k_{0}+\varepsilon H z 0}+\sum_{\substack{\text { finite } \\ F_{L} \cdot(K x+\varepsilon H)<0}} F_{L}
$$

The cone Theorem follows from taring $\varepsilon \rightarrow 0$ in the above expression. (with some extra formal argument that we are omitting).

Step 6: We prove that if $F \subseteq \overline{N E}(x)$ is a $(k x+\Delta)$-negative face, then there exists a net Carbier divisor D so that $F_{D}=F$.

Let $\langle F\rangle$ be the linear span of $F ., V \subseteq N_{1}(X)^{*}$ the set of linear functions vanishing identically on $\langle F\rangle$. Since the generators of F are spanned over \mathbb{Q}., then $Z_{\text {is }}$ defined over Q, take $\varepsilon \geq 0$ small enough so that $K x+\Delta+\varepsilon H$ is negative on F.

Since F is extremal, $\quad\langle F\rangle \cap \overline{N E}(x)=F$. Thus

$$
W_{F}:=\overline{N E}(X)_{k \times+\Delta+c H 20}+\sum_{\substack{\operatorname{Jim}_{\begin{subarray}{c}{1 \\
F_{L} \neq 1 \\
\hline \neq 1} }} F_{L} .}\end{subarray}}
$$

is a closed strictly convex cone int $\langle F\rangle$ at the origin.
Furthermore, $\sqrt[N E]{N E}=W_{F}+F$. Hence we can find
a latte point $g \in V$ so that $(g=0) \supseteq\langle F\rangle$ and

$$
(\rho=0) \cap W_{F}=0
$$

Thus, we may find a Carter divisor D which grues a supporting function of $F \subseteq N E(X)$

Step 7: By assumption $-\left(k_{x}+\Delta\right)$ is portive on F. $m D-\left(k_{x}+\Delta\right)$ is straitly positive on $\overline{N E}(X) \backslash$ wo r By bpf Theorem. ImDl is bpf for $m>20$
Let g_{F} be the contraction associated by the Stem factorization to the but linear system ImDI.
Step 8: Since g_{F} is not an som $(m D$ not ample), it most contract some curve C. Similes to the smooth care,

$$
0<-(k x+\Delta) c \leqslant 2 \operatorname{dim}(x) .
$$

Step 9: Let $X \xrightarrow{\delta F} Z$ be the contraction. associated to F. We claim that any line bundle \mathcal{L} on X such that L.F $=0$ descends to Z i.e., there exists \mathscr{L}_{z} line bundle on Z so that. $\mathscr{L}=\rho_{F}^{*} \mathscr{L}_{z}$.
Let D be a Carbier divisor supporting $F . \quad W F \subseteq \overline{N E}(X)$.
$\int F$ is defined by ImD. So, both $m D$ and $(m+1) D$ are pull-back of Cartier divisors on Z.

$$
\begin{aligned}
m D & =\rho_{F}^{*} D_{1} \\
+1) D & =g_{F}^{*} D_{2}
\end{aligned}
$$

Thus, $D=\left(m_{1}\right) D-m D=f^{*}\left(D_{2}-D_{1}\right)$.
Hence D is the pull-back of a Carver frvisor on Z.

Now, let \mathcal{L} with $\mathcal{L} . F=0$, then $\mathcal{L}+m D$ is 215 supporting F. Hence, $\mathcal{L}+m D=\mathcal{J}_{F}^{*} M_{z} \longrightarrow$ Cartier.

Set $\mathscr{L}_{z}=Q_{z}\left(M_{z}-D_{\perp}\right)$.

