

Week A: bpf Theorem. The cone Theorom.

The Cone Theorems: old notation new notation (X,A) sub-klt (X,Z) KIE -----> (X,△) Klt with △≥0 (X,Z) KIE. Plemark: As of 2021, this still confuses people. Kit~ Theorem (Non-Vanishing): X proper, (X,A) sub-Klt D'net Carbier Carbier Assume a D- (Kx+A) is bip and net for some a 20. Then for M>20 $H^{o}(X, mD - LAJ) \neq 0.$ Laj=0 Theorem (bpf): X proper, (X, () Klb D het Carbier divisor. Assume $aD - (K_X + \Delta)$ is big and net for some azo. Then for M>20 Im DI 15 bpf

heorem (Rationality): X proper, (X.A.) Klt. Kx+ not net, a (Kx+ a) Carbier. H net and big Carbier Define $r := rCH = m_{200} d b \in |R| + f(K \times + \Delta) is neft.$ Then r is rabional and its denom is controlled by aldimX+1). Theorem (Cone Theorem): (X, A) projective Klt pair. (1) There are countably Many CiCX s.b. O< - (Kx+2). Ci s) 2dmX & $\overline{NE}(x) = \overline{NE}_{(Kx+a)>,0} + \overline{2}, R_{2,0} EC.]$ formul C.) For any E>o and H ample. cons of Rat NE(x) = NE(Kx+Z+EH) >>> + Z, IR>> [C:] Convex geom (3) $F \subseteq NE(X)$ extremal, $(K \times + \Delta) - neg$. Then there exists a contraction morphism $Cont_F: X \rightarrow Z$ CEX mapped to a point () [C]EF. (4) Contr: $X \longrightarrow Z$, as in (3), Z a line bondle on Xs.b. Z.F = 0. Then there exists Zz on Z s.l. $Z \simeq \operatorname{conf} F Z_{Z}$ Peometric Asbements-

The Cone Theorems "

Non-vanxhry WI Cuse Kodaira vanshry bo hift seebonr Base-point free Theorem Rabionality Theorems: (prg) Cone Theorem formal arguments Rmx: The whole Inscussion is with (X,A) Klb. But the above theorems hold when (X, Δ) le up replacing net & byp \implies ample

Proof of bpf Theo rem: By non-vanishing H°(XimD) =0 for m>20. BGS) the base locus of 15D1. It suffices to prove this for $B_s = B(m) \neq p$. $j: \Upsilon \longrightarrow X$ log resolution. $K = f^{*}(K_{x+\Delta}) + \Sigma_{a_j} F_j$ $\alpha_j > -1.$ $f^*(aD-(kx+\Delta)) - (\overline{2}, p_j F_j) \quad o < p_j << 1$ big & nef ample over X. ample $f^* ImDI = IMI + \Sigma_i r_j F_j$ fixed parts Bs = UEF(Fs) [rj>0}. Nobe that f'BsImDI = BsImf*DI

There exists F_j with r_{j20} so thit for all b>>0. F_j is not contrined in Bs [bf*D] b>0 integer, c>0 rational b> cm + a, we define N(cb,c) = bf*D - Kr + Z_{1j}^{c} C-cr_j + a_{j} - p_{j}) F_j. = (b - cm - a) f*(CD) (nef) +

 $CCmf^*D - \Sigma(r_5F_5) Cbpf) Comple$

 $f^*(aD - (Kx + \Delta)) - \overline{Z}[p_5F_3 Cample]$

By Kodaira $H'(T, [N(Lb, c)] + K_T) = 0$, and

 $TN(b,c) = bf^*D + \sum_{i}^{r} \Gamma - cr_j + a_j - p_i TF_j - K_r$

increase C from O to co and wipple the p; to achieve

H° (Y, 67* D+ TAI) \rightarrow $H^{\circ}(F, Cbf^{*}D + TA1)|_{F})$

H O by Non-Vanishiy

has a section not vanishing on F.

Since TA1 is f-exceptional, we have $H^{\circ}(Y, bf^{*}D + TA1) = H^{\circ}(Y, bf^{*}D) = H^{\circ}(X, bD).$

Nepativity Lemma: h: Z -> Y biration proper between normal, -Bh-ney. (1) $B \ge 0 \iff h \ast B \ge 0$ over the bir (2) $h^{-1}(y) \subseteq \text{supp } B$ or $h^{-1}(y) \cap \text{supp } B := \beta$ $0 \leq E \sim bf^*D + TAT$ E- TA7 ~ 6f*D~a, x 0. $f_*(E-TA1) = f_*E_{20}$ E-TA7 20

Theorem: Let (XIA) be proper Kl& prir. $K_{x+\Delta} \xrightarrow{\text{big}} K \xrightarrow{\text{nef}} Then \bigoplus_{m \ge 0} H^{\circ}(O_{\infty}(mK_{x+Lm}))$ is finibely generated over C. BCHM06 : The finite gen of RCK*+22 Conjecture (Abundance): (X/Δ) proj Klt, if $K_X + \Delta$ is nef, then $K_X + \Delta$ is semizmple. Conjecture (Effectivity): (X, a) proj Klh A Kx+ A pseff, then Kx+ A is eff. $K_{X+}\Delta \sim_{Q} E_{20.}$

The cone theorem,

Theorem: NZSNaSNR. NESNR closed strictly convex cone. KEN& so thet (K.C) <0 for some CGNE. Assume there exists & CK) & Ziso such that for all He Nž with Hzo on NE-Sol. r= max {beR | H+tk 20 on NES. Vabional of the form 21/2 (K). Then. $\overline{NE} = \overline{NEK_{20}} + \sum_{i=1}^{i} |R_{20}[3_i]$ combble. 5,6 Nz with CS: K) <0 and Reo [3;] to not secumulate in Kx<0.

Proof: Fix H an ample Cartrer divisor.

L nef, $F_L = L^{\perp} \cap NE$, $N \in \mathbb{Z}_{>0}$.

 $V_L(n,H) = \max \{ f \in \mathbb{R} \mid nL \neq H \neq \frac{t}{\alpha_{CK}} \mid K \text{ is neff} \}$

rLCn,H) is in Ziso. rL(n,H) non-dec with n

Indeed, If n'>n, then

hef

Hence, we conclude that r_(n', H) 3 r_(n, H).

On the other hand, we will see it is bounded above

Indeed, for any SEFL\NEK20., we have H-3+ K-5 20 K-S ChiHJ≤ dCK). H-S So r_c(n,H) is bounded above, is integral and non-dec. This sequence stabilize for n large enough to r_c(H) We define the divisor: $D(nL, H) = n\alpha(K)L + \alpha(K)H + r_L(H)K.$ We claim that: FD(nLH) S NEKCO U for. orthogonal to D(nL,H). 3. D(nLH) = 0, then (nd(K)L+ d(K)H)-320 If so 5. K <0, proving this claim.

We claim that for n large enough, we have. (*) FDCnl. H) S FL. Let SE FDORLH) with SE FL. Then, we have that $3. L \ge 0$ and $3. (N \propto (K) L + \propto (K) H + r_L(H) K.) = 0.$ For n'>>n, we have (this value will depend on x(K), H, r. (H) & K). ≤·(h'a(K)L + a(K)H + rL(H)K) >0. Hence 3 & FD(n'L,H) Since Lis nef, we have FD(n'LiH) & FD(nLiH). IF FDUILHIS FL, then we stop. If not, we can iterate the above process to cut down dim FD(nilih) apam. This proves that (*) eventually holds.

Hence, we have that:

$$0 \neq FDCnL.HI \subseteq FL$$
 holds op to replacing
 n with a large multiple
Claim: for some H, dim FDCnLiHI < dim FL.
Hi basis FL^{*}, the hinear forchum
 $(nL + Hi + \frac{r_L(Hi)}{\sigma(K)} \times)|_{FL}$ they can't
be all zero, so $\dim FDCnL.HI < \dim FL$ for rome ..
 $FL' \subseteq FL$ FL' is one \dim .
 \overline{NE} $\overline{NE}_{K20} + \frac{2}{5} FL$
 $\dim FL^{-1}$
have the closure (verbalism from clossic cone Thm).

Step 4: In this step, we prove that the FL

we have the equality :

$$\overline{NE} = \overline{NE}_{K_{0}+ \epsilon H_{20}} + \frac{1}{f_{1}m_{1}be}, F_{L}$$

$$F_{L} \cdot (K_{X}+ \epsilon H_{2}) < 0$$

The cone Theorem follows from taking
$$E \rightarrow 0$$
 in the above expression.
(with some extra formal arguments that we are omitting).

Step 6: We prove that if
$$F \subseteq NE(X)$$
 is a $(K_X + \Delta)$ -negative face, then there exists a net Carbie divisor D so that $F_D = F$.

Let
$$\langle F \rangle$$
 be the linear span of F., $V \subseteq N_1(X)^*$

the set of linear junctions vanishing identically on <F?.

Since the generators of Fare spanned over Q.,

then V is defined over Q, take E20 small enough so that

Kx+A+EH is nepabive on F.

Since F is extremal, <F>NNE(X) = F. Thus

$$W_{F} := \overline{NE}(X)_{K+\Delta+CH \ge 0} + \sum_{\substack{\text{dim} F \ge 1\\ F \le g \neq F}} FL$$

Is a closed strictly convex cone inf $\langle F \rangle$ at the origin.
Furthermore, $\overline{NE} = W_{F} + F$. Hence we can find
a lattice point $g \in V$ so that $(g=0) \supseteq \langle F \rangle$ and
 $(g=0) \cap N_{F} = 0$
Thus, we may find a Carbier divisor D which gives
a supporting function of $F \subseteq NE(X)$.
Step 7: By assumption $-(K_X + \Delta)$ is positive on F .
 $mD - (K_X + \Delta)$ is strictly positive on $\overline{NE}(X) \setminus b \ge$
By bpf Theorem. Im D1 is bpf for m>20
Let g_F be the contraction associated by the Stein factorization
to the bpf linear system Im D1.
Step 8: Since g_F is not an isom CmD not ample), it
must contract some curve $C = Ormitive$ to the smooth case,
 $D < -(K_X + \Delta) C \le 2dim(X)$.

n

Step 9: Let
$$X \xrightarrow{SF} Z$$
 be the contraction.
associated to F. We claim that any line bundle Z on X
such that $Z.F=0$ descends to Z i.e., there exists Z_Z
line bundle on Z so that $Z = g_F^* Z_Z$.
Let D be a Carbier drivisor supporting F. $W_F \subseteq NE(X)$.
 g_F is defined by ImD1. So, both mD and $(m+1)D$
are pull-back of Carbier drivisors on Z.
 $(m+1)D = g_F^* D_2$
Thus, $D = (m+1)D - mD = g_F^* (D_2 - D_1)$.
Hence D is the pull-back of a Carbier drivisor on Z.
New, let Z with $Z F=0$, then $Z+mD$ is also
supporting F. Hence, $Z+mD = g_F^* M_Z^*$ Carbier
Set $Z_Z = O_Z(M_Z - D_1)$.

 \Box